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Turbulent flow in a rectangular channel is investigated to determine the scale and
pattern of the eddies that contribute most to the total turbulent kinetic energy and
the Reynolds shear stress. Instantaneous, two-dimensional particle image velocimeter
measurements in the streamwise-wall-normal plane at Reynolds numbers Reh = 5378
and 29 935 are used to form two-point spatial correlation functions, from which
the proper orthogonal modes are determined. Large-scale motions – having length
scales of the order of the channel width and represented by a small set of low-order
eigenmodes – contain a large fraction of the kinetic energy of the streamwise velocity
component and a small fraction of the kinetic energy of the wall-normal velocities.
Surprisingly, the set of large-scale modes that contains half of the total turbulent
kinetic energy in the channel, also contains two-thirds to three-quarters of the total
Reynolds shear stress in the outer region. Thus, it is the large-scale motions, rather
than the main turbulent motions, that dominate turbulent transport in all parts of the
channel except the buffer layer. Samples of the large-scale structures associated with
the dominant eigenfunctions are found by projecting individual realizations onto the
dominant modes. In the streamwise wall-normal plane their patterns often consist
of an inclined region of second quadrant vectors separated from an upstream region
of fourth quadrant vectors by a stagnation point/shear layer. The inclined Q4/shear
layer/Q2 region of the largest motions extends beyond the centreline of the channel
and lies under a region of fluid that rotates about the spanwise direction. This pattern
is very similar to the signature of a hairpin vortex. Reynolds number similarity of the
large structures is demonstrated, approximately, by comparing the two-dimensional
correlation coefficients and the eigenvalues of the different modes at the two Reynolds
numbers.

1. Introduction
It is implicit in the velocity defect law, and other statements of outer flow similarity

for turbulent flow over walls, that large-scale motions scaling with the outer length
scale exist in these flows. As in the inner wall-layer, these motions are coherent in the
sense that they have characteristic flow patterns that persist over times long enough
to contribute significantly to the time average character of the flow. Perhaps the best
known large-scale motions are the bulges of the turbulent boundary layer. They travel
at approximately 80% of the free-stream velocity, and they are about two boundary-
layer thicknesses long and 1–2 boundary-layer thicknesses wide (Kovasznay, Kibens
& Blackwelder 1970; Murlis, Tsai & Bradshaw 1982). The low-speed puffs observed
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by Wygnanski & Champagne (1973) are another well-known type of large-scale
motion that occurs in pipe flow, albeit only at sufficiently low Reynolds numbers
and/or with sufficiently smooth entry conditions. Large-scale motions in the form of
two-dimensional roll-cells oriented with their rotation axis in the streamwise direction
and spanning the width of the flow have been observed in plane turbulent Couette
flow; however, in this case the rolls cells appear to be steady and may therefore be
better interpreted as secondary flow instabilities of the mean flow (Lee & Kim 1991;
Papavassiliou & Hanratty 1997).

Although the low-speed streaks that occur in the buffer layer of wall turbulence
have very long dimensions in the streamwise x-direction, their spanwise and wall-
normal scales are small, of the order of 100 viscous wall units (Kline et al. 1967;
Robinson 1991). Therefore, at elevated Reynolds numbers, where the ratio of the
outer length scale to the inner viscous length scale is large, near-wall streaks are very
thin, and the large-scale motions are distinguished from them by their much larger
extent in the wall-normal y-direction and the spanwise z-direction. In the present
work, which deals with data in the (x, y)-plane, ‘large scale’ will denote motions that
are large in both the x- and y-directions.

Townsend (1958) and Grant (1958) both observed that the long tail on the stream-
wise correlation function of the streamwise velocity implied that large-scale motions
contribute significantly to the streamwise kinetic energy. Townsend (1958, 1976) ar-
gued that the long extent in the x-direction implied small values of the v-component
of velocity, and hence small contributions to the Reynolds shear stress, even though
the contribution to the kinetic energy of u is large. He termed the large eddies close
to the wall ‘inactive’, and focused attention on the ‘main’ turbulence eddies which are
those with length scales in the inertial range. Several experimental investigations pro-
vide spectral data that can be interpreted to support Townsend’s view that large-scale
motions contain a substantial fraction of the streamwise kinetic energy, cf. Lekakis
(1988), for example. A few studies (Naguib & Wark 1992; Adrian & Lekakis 1991)
have reported direct observations of this effect.

However, a question exists about the degree to which large-scale motions contribute
to the Reynolds shear stress. Using Lekakis’ (1988) correlation data, stochastic esti-
mates of 〈u(t + τ), v(t + τ)|u(t), v(t)〉 indicate that after events in which the Reynolds
shear stress u(t)v(t) has large values in either the second quadrant (Q2) or fourth
quadrant (Q4), there is a rapid transient decay of 〈u(t+ τ), v(t+ τ)|u(t), v(t)〉 followed
by a long time during which the velocity disturbance decays slowly (Adrian & Lekakis
1991). Thus, most of the time that the flow vector spends in the Q2 or Q4 quadrants
is due to large time-scale events, i.e. long length-scale motions.

One-dimensional analysis of the type provided by spectral analysis of hot-wire or
laser-Doppler velocimetry (LDV) signals is deficient in that it cannot identify the
scale of a structure in anything but the mean flow direction. In particular, we cannot
distinguish between the contributions from long, thin structures such as near-wall
streaks, and the long, thick structures that might occur in the outer region of wall
turbulence. Two- or three-dimensional analysis must be used, and for this purpose
visualization of two-dimensional particle image velocimetry (PIV) data permits some
insights into the large-scale motions in boundary layers (cf. Adrian, Balachandar &
Tomkins 1998 and Adrian, Meinhart & Tomkins 2000, for example). The present
work is motivated by PIV visualizations in channel flow of large Reynolds stresses
associated with large-scale motions having sizes that are, approximately, independent
of Reynolds number (Hanratty et al. 1993). On average, they had dimensions as large
as the channel height in the wall-normal direction and more than two channel heights
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in the streamwise direction. Gaussian and spectral sharp-cut filters were used in an
attempt to characterize these motions. This approach had a number of disadvantages,
in that it could not easily accommodate changes of scale in the wall-normal direction,
and a certain amount of subjective judgement entered the analysis.

Proper orthogonal decomposition (POD), a generalization of conventional Fourier
power spectral analysis, allows us to evaluate the distribution of energy as a function
of scale when the flow is statistically inhomogeneous in one or more directions. It
decomposes the vector signal into modes having various scales in each direction, and
it evaluates the contribution that each mode makes to the energy and the Reynolds
stresses. In the case of channel flow, the modes are trigonometric Fourier modes
in the statistically homogeneous streamwise direction, and non-trigonometric in the
statistically inhomogeneous wall-normal direction. The POD method is used here to
provide a precise and well-defined evaluation of the scales of the motions contributing
to both the energy and the stress-producing events from the two-dimensional data.

While the present analysis by POD exclusively addresses the distribution of
Reynolds stress as a function of scale, in a manner analogous to Fourier power
spectral analysis, it is clear that POD also contains some information about the
structure of the turbulent eddies (otherwise the eigenvalues and eigenfunctions would
not differ from one type of turbulence to another). Extracting this information is not,
in general, as simple as examining the structure of the individual eigenfunctions, since
it is well known that the eigenfunctions of any form of homogeneous turbulence are
trigonometric functions, and eddies are not waves.

In an early approach to this problem, Lumley (1970) coupled POD analysis with
the assumption that the flow could be represented as a shot noise process to extract
structures called the characteristic eddies. Bakewell & Lumley (1967) obtained the
most energetic eddy structure in the wall region, y+ < 40, in a turbulent pipe flow at
ReD = 8700. (ReD is the Reynolds number based on bulk velocity and pipe diameter,
and y+ = yuτ/ν is the inner layer coordinate made non-dimensional by the viscous
length scale based on the friction velocity uτ and the kinematic viscosity ν.) They
measured only the Re11(rx) component of the correlation tensor, and obtained the
other components by using a mixing-length assumption and conservation of mass. One
eigenmode was calculated. The assumption of zero phase was used to reconstruct a
typical eddy, which carried over 90% of the total streamwise turbulent intensity. They
concluded that the dominant structure in the buffer layer consists of counter-rotating
eddy pairs of elongated extent that are tilted in the upstream direction.

Herzog (1986) measured four components of the correlation tensor Rij , i, j = 1, 3, at
six points in the wall-normal and circumferential directions and at seven points in the
streamwise direction in a pipe flow at ReD = 8750 (uτR/ν = 265, where R is the pipe
radius). The rest of the components of the tensor were reconstructed from continuity.
The decomposition domain, 0 6 y+ 6 40, was far too small to encompass the large-
scale structures we are interested in here, but the results they found for the buffer-layer
structure are of interest for later comparison. The maximum eigenvalue was found
to be dominant for a wavenumber of k1ν/uτ = 0, n = 1 and k3ν/uτ = 0.0035. The
first eigenmode contained 60% of the streamwise turbulent intensity, and the first
three eigenmodes contained almost all of the total energy. A shot noise expansion
was used to determine the phase of a typical eddy. With a zero-phase reconstruction,
a typical eddy was found to be a pair of counter-rotating vortices whose centres were
30–40ν/uτ above the wall, 65ν/uτ apart, and 400ν/uτ in extent. They were tilted at 5◦
to the wall.

Moin & Moser (1989) applied POD to one (y), two (y-z) and three-dimensional
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decompositions of turbulent channel flow at low Reynolds number (Reh = Ubh/ν =
2800, where Ub is the bulk velocity, and h is the half-height of the channel;
Reτ = uτh/ν = 180). The two-point velocity correlation tensor Rij(rx, y, y

′, rz), i, j =
1, 2, 3, was computed using the DNS data on three different domains: 0 < y+ < 40,
140 < y+ < 180 and 0 < y+ < 180. A shot noise expansion was used to determine
the phase. The resulting zero-phase characteristic eddy, which contributed as much
as 76% of the kinetic energy, was found to consist of a narrow ejection straddled by
a pair of weak, streamwise, counter-rotating vortices with a streamwise extent of less
than 100+. They were inclined at 10◦ near the wall, and as much as 60◦ farther away
from the wall. Sirovich et al. (1990, 1991) also used DNS data to calculate correlation
and spectral tensors at low Reynolds numbers (ubh/ν = 1200, 1800; uτh/ν = 80, 125).
They considered only the Reh = 1800 study to be fully developed. The decompo-
sition domain was the full channel height. A three-dimensional decomposition was
performed; 16 modes with wavenumbers (k1 = 0–1, n = 1–2, k3 = 0–3) were found to
account for 60% of the total energy in the flow, where k1 and k3 denote the numbers
of full waves in the streamwise and spanwise directions and n is the eigenmode order
in the wall-normal direction. The most energetic mode with k1 6= 0 for the two cases
is k1 = 1, n = 1, k3 = 3.

All of the foregoing POD results pertain to low-Reynolds-number channel flow.
The behaviour at high Reynolds number is less well understood. Chambers et al.
(1988) used Burgers’ equation with random forcing to create a stationary, spatially
inhomogeneous flow structure possessing the characteristics of a two-scale boundary
layer at the endpoints of the unit interval. The POD eigenfunctions in the inhomogen-
eous spatial variable were found to be similar, over a range of Reynolds numbers,
when they were scaled with outer variables. They suggested that the POD of real
turbulence might also obey such a generalized law of Reynolds number similarity.

Liu, Adrian & Hanratty (1994, 1995) obtained the POD from measurements in
the (x, y)-plane of channel flow at the same Reynolds numbers as reported here. The
structure of the one-dimensional POD eigenfunctions consisted of a thin layer close
to the wall, of order of the buffer-layer thickness, in which the modes decreased
rapidly to zero at the wall, and an outer region in which the structure of the modes
was essentially independent of the Reynolds number. The eigenvalue spectra of the
channel flow were shown to correlate well with those of a boundary-layer flow (Lu &
Smith 1991), supporting the notion that outer-layer similarity applies to at least two
types of wall turbulence. Outer-layer Reynolds similarity of the POD is a stronger
form of similarity than that found from the mean velocity. Its validity is based on data
at a relatively low Reynolds number; so further work is needed to test its generality
for all Reynolds numbers. Even so, outer similarity of the POD modes suggests that
the form of the large-scale motions and the amounts they contribute to energy and
Reynolds stress may also be independent of Reynolds number.

This paper examines the significance and structure of large-scale motions of turbu-
lent flow in a channel. Particle image velocimetry (Adrian 1991) is used to capture, at
different instances of time, the spatial variation of the two components of the velocity
in a plane that is perpendicular to the wall and oriented in the flow direction (x-y).
Two-dimensional spatial correlations are determined by averaging many realizations
of the flow. These correlations are analysed by proper orthogonal decomposition
to arrive at a representation of the flow field as the sum of 5346 two-dimensional
orthogonal eigenfunctions.

Two Reynolds numbers were studied Reh = Ubh/ν = 5378 and 29 935 (or Reτ =
uτh/ν = 315 and 1414, where Ub is the bulk velocity, and h is the half-height of the
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channel). These conditions are identical to those in Liu et al. (1991, 1994). Because of
limitations in the spatial resolution of PIV close to the wall, all of these studies focus
on the outer flow, for which the appropriate length scale is normally assumed to be
independent of Reynolds number and proportional to the channel height.

By virtue of the orthogonality property, the contributions of each POD mode
to the total Reynolds stress and to the total energy are additive. In this way,
it is shown that most of the Reynolds stress is carried by a small number of
eigenmodes representing large-scale events. Each instantaneous measurement of the
velocity field can be represented by a linear combination of the eigenfunctions. By
summing the small number of eigenfunctions that contain most of the Reynolds
stress, the coherent structure of interest, in an individual realization of the field, can
be captured. Since these are the large-scale motions, this procedure represents a low-
pass filtration. Similarity is explored by comparing, at the two Reynolds numbers, the
two-dimensional spatial correlations and the fractional contributions of the different
eigenmodes to the Reynolds stress and to the kinetic energy.

The research described in this paper and in Liu et al. (1994, 1995) differs from
previous POD studies in that it uses laboratory measurements at a much larger
number of points, and it studies larger Reynolds numbers. The interpretation of the
eigenfunctions is also somewhat different from previous studies in that no attempt
is made to use the eigenfunctions to represent a characteristic eddy. Instead, the
structure of the large eddies is found by using the eigenfunctions as a low-pass filter
that extracts the motions that are large contributors to the Reynolds stress (Liu et al.
1995).

2. Experimental procedures
Physical lengths made dimensionless by the viscous length scale are denoted by

the usual notation (x+, y+, z+), but fluctuating velocity components normalized by
the wall-friction velocity uτ are denoted by (u, v, w) = (u1, u2, u3), the superscript ‘+’
being omitted to avoid clutter in the POD equations. The two-dimensional channel
flow facility contained water, and its rectangular cross-section was 609.6 mm wide
by 2h = 48.75 mm high. The channel and the single-lens photographic particle image
velocimeter used to measure velocity in this study have been described in studies by
Niederschulte, Adrian & Hanratty (1990), Warholic (1997) and Guenther et al. (1998).
All of the experimental measurements of conventional turbulence statistics through
fourth-order are consistent with generally accepted behaviour of channel flow, as
found in the experiments of other investigators, and in direct numerical simulations.

The PIV provided instantaneous measurements of (u, v) on an (x, y)-plane that
extended from y = 0, to y = 2h, and the length of the data domain in the streamwise
direction was Lx = 78 mm = 3.2h, as determined by the field-of-view of the PIV
camera. More than 5000 vectors were calculated from each PIV photograph, and an
ensemble of 60–80 photographs was obtained at each Reynolds number. The flow
parameters are given in table 1. The measurement volume used to obtain a vector
during interrogation was (∆x0,∆y0,∆z0) = (1.6 mm, 0.8 mm, 0.8 mm). These dimensions
normalized with viscous wall units and with the outer length scale, h, are given in
table 2. The spacing between vectors was 1.2 mm in the x-direction and 0.6 mm in
the y-direction. The measurements closest to the wall were at y+ = 5.16 and 23.2+

for the two Reynolds numbers. At the lower Reynolds number, the spatial resolution
is comparable to that achieved in direct numerical simulations, but at the higher
Reynolds number, each measured vector represents an average over a significant
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Ubh/ν uτh/ν = h+ L+
x Ub (mm s−1) uτ (mm s−1) ν/uτ (mm)

5378 315 1008 212 12.4 0.0775
29 935 1414 4520 1074 50.7 0.0172

Table 1. Flow parameters.

Ubh/ν ∆x+
0 ∆y+

0 ∆z+
0 ∆x0/h ∆y0/h ∆z0/h

5378 20.6 10.3 10.3 0.065 0.032 0.032
29 935 93.0 46.5 46.5 0.065 0.032 0.032

Table 2. The measurement volume in the PIV experiments.

range of small scales. For example, the resolution in the y-direction ∆y+
0 = 46.5 was

clearly inadequate to resolve the buffer layer. However, its size relative to the outer
scale, ∆y/h = 0.032, was small enough to allow the evaluation of 15 POD modes in
the y-direction. Thus, the range of validity of our measurements of the POD modes
and eigenvalue spectra is restricted to the lower orders that are adequately resolved
by the measurements.

3. Proper orthogonal decomposition
Proper orthogonal decomposition of the experimental channel flow data is per-

formed on the domain (0 6 x/Lx 6 1, 0 6 y/2h 6 1), where the streamwise coordi-
nate x is normalized by Lx = 3.2h, and the wall-normal coordinate y is normalized by
2h. Since the flow is fully developed, its statistics are homogeneous in the streamwise
direction, and the eigenfunctions of the POD are trigonometric in x. Therefore, on
(0 6 x/Lx 6 1, 0 6 y/2h 6 1) we can represent the ith component of the velocity,
ui(x, y) by the Fourier series

ui(x, y) =
∑
k

ûi(k, y) exp (j2πkx/Lx), (1)

where the Fourier coefficient

ûi(k, y) =
1

Lx

∫ Lx

0

ui(x, y) exp (−j2πkx/Lx) dx, (2)

is a random function of the inhomogeneous direction y with parameter k. (Note that
the wavenumber k in (2) is defined so as to be an integer, rather than 2π over a
wavelength.) The two-dimensional proper orthogonal decomposition is completed by
expanding ûi(k, y) in a Karhunen–Loève expansion

ûi(k, y) =
∑
n

a(k,n)φ
(k,n)
i (y), (3)

wherein the basis functions φ(k,n)
i (y) are orthogonal,

1

2h

∫ 2h

0

φ
(k,n)
i (y)φ(k,n′)∗

i (y) dy = δnn′ . (4)
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The Fourier coefficients are given by

a(k,n) =
1

2h

∫ 2h

0

φ
(k,n)∗
i (y)ûi(k, y) dy. (5)

Requiring the Fourier coefficients to be statistically orthogonal,

〈a(k,n)a(k′ ,n′)∗ 〉 = λ(k,n)δnn′ δkk′ , (6)

and requiring the basis functions φ(k,n)
i (y) to have the property that the partial sums

of (3) converge faster than the partial sums of any other set of orthogonal functions
results in the following integral equation for φ(k,n)

i (y):

1

2h

∫ 2h

0

K
(k)
ij (y, y′)φ(k,n)

j (y′) dy′ = λ(k,n)φ
(k,n)
i (y) (i, j = 1, 2), (7)

where

K
(k)
ij (y, y′) = 〈ûi(k, y)û∗i (k, y

′)〉. (8)

The kernel K (k)
ij (y, y′) is related to the two-point spatial correlation tensor

Rij(rx, y, y
′) = 〈ui(x, y)u∗j (x+ rx, y

′)〉, (9)

by

K
(k)
ij (y, y′) =

1

Lx

∫ Lx

0

(1− rx/Lx)Rij(rx, y, y′) exp (j2πkrx/Lx) drx. (10)

The spatial correlation tensor is calculated from the PIV data by forming the prod-
uct of velocity components, ensemble averaging over the ensemble of experimental
fields, and line averaging over the x-direction. The ensemble average for a given
(rx, y, y

′) extends only over those realizations that have valid vector data at those
points. The effect of missing data is accounted for by dividing by the number of valid
data in the ensemble at each point. The separations between the two points in the
correlation functions are in the wall-normal and streamwise directions. Separations
in spanwise direction and time-lags are not considered.

Combining the foregoing equations gives

ui(x, y) =
∑
k

∑
n

a(k,n)ψ
(k,n)
i (x, y), (11)

where

ψ
(k,n)
i (x, y) = φ

(k,n)
i (y) exp (j2πkx/Lx) (12)

is the two-dimensional orthogonal eigenfunction of the complete POD expansion. It
satisfies the orthogonality condition,

1

2hLx

∫ 2h

0

∫ Lx

0

ψ
(k,n)
i (x, y)ψ(k′ ,n′)∗

i (x, y) dxdy = δnn′δkk′ . (13)

The eigenfunction of the ith velocity component φ(k,n)
i (y) is a Fourier mode of order

k in the streamwise direction and order n in the wall-normal direction. The order k is
associated with a wavelength Lx/k, i.e. k equals the number of sinusoidal wavelengths
in the domain Lx. It is related to the streamwise wavenumber by kx = (2π/Lx)k.
The principal usefulness of the POD is that it also associates a length scale in the
y-direction with the modal order n. However, since the statistical inhomogeneity in
this direction implies varying length scale, the modal order n cannot be related to a
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single length. Rather, the structure of the eigenfunction itself defines a range of length
scales for each mode. It has been shown that the modes approach trigonometric
form as the modal order increases (Moser 1994; Sung & Adrian 1994), so the mode
becomes associated with a length scale 2h/n for large n. Thus, POD decomposition
makes it possible to evaluate the contribution of structures on the basis of their size
in both the streamwise and the wall-normal directions, i.e. structures that are, for
example, long in x, but narrow in y, or structures that are large in both x and y.

The contributions of structures of various sizes can be evaluated quantitatively
by summing the contributions from the various modes. This is possible because the
modes are statistically uncorrelated. For the turbulent kinetic energy,

E =
1

2h

∫ 2h

0

〈ui(x, y)u∗i (x, y)〉 dy =
∑
k

∑
n

λ(k,n). (14)

For the turbulent Reynolds stress,

〈ui(x, y)u∗j (x, y)〉 =
∑
k

∑
n

λ(k,n)φ
(k,n)
i (y)φ(k,n)∗

j (y), (15)

and

1

2h

∫ 2h

0

〈ui(x, y)u∗j (x, y)〉 dy =
∑
k

∑
n

λ(k,n) 1

2h

∫ 2h

0

φ
(k,n)
i (y)φ(k,n)∗

j (y) dy. (16)

Superscript n represents the mode order in the inhomogeneous wall-normal direction.
In a one-dimensional decomposition (Liu et al. 1994) n equals the number of zero-
crossings of the eigenfunction. However, in two- or three-dimensional decomposition,
the interpretation is more complicated, because the eigenfunctions are complex. λ(k,n)

is the eigenvalue of the mode with orders n and k.

4. Distribution and structure of energy and transport
4.1. The two-point correlation functions

Contours of the two-point correlation coefficients with separations in both y- and
x-directions, Rij(rx, y, y

′)/σi(y)σj(y
′), i, j = u, v, are plotted in figure 1 for Reh = 5378

and in figure 2 for Reh = 29 935. Here, σi denotes the root-mean-square value of
the fluctuation of the ith-component of velocity. The correlation functions are given
for the fixed point, y, located at four different distances from the wall: y/h = 0.065,
0.237, 0.508 and 1.0. These correspond to y+ = 20.5, 75, 160 and 315 for the lower
Reynolds number, and y+ = 92, 335, 718 and 1414 for the higher Reynolds number.
Statistical sampling error of the two-dimensional correlation functions is estimated to
be less than ±10% of the peak correlation value.

In the outer region the correlation contours for the two Reynolds numbers are
qualitatively similar when the separations of the two points in both the x- and
y-directions are scaled with h, partially supporting the notion that the structure of
large-scale motions exhibits Reynolds number similarity (Townsend 1976). However,

Figure 1. Contours of the two-point correlation coefficients for Reh = 5378. (a)(i)–(a)(iv),
Ruu(rx, y, y

′)/σu(y)σu(y
′); (b)(i)–(b)(iv), Rvv(rx, y, y

′)/σv(y)σv(y
′); (c)(i)–(c)(iv), Ruv(rx, y, y

′)/σu(y)σv(y
′);

(d)(i)–(d)(iv), Rvu(rx, y, y
′)/σv(y)σu(y

′). The locations of the fixed correlating points are: (a)(i)–(d)(i),
y/h = 0.065 (y+ = 20.5); (a)(ii)–(d)(ii), y/h = 0.237 (y+ = 75); (a)(iii)–(d)(iii), y/h = 0.508
(y+ = 160); (a)(iv)–(d)(iv), y/h = 1.0 (y+ = 315).
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there are some differences, one being a tendency for the highly correlated regions
(∼ 0.8 or higher) of the higher-Reynolds-number data to be smaller than the highly
correlated region of the lower-Reynolds-number data. This effect is expected because
the ratio between the Taylor microscale and the integral length scale decreases with
increasing Reynolds number. A more fundamental Reynolds-number effect that is
definitely concerned with the larger scales can be seen in the streamwise extent of
the streamwise velocity correlation. Relative to the lower-Reynolds-number case, the
length of the correlated region at the higher Reynolds number is longer close to
the wall (compare figures 2ai and 2aii to figures 1ai and 1aii) and shorter farther
away from the wall (compare figures 2aiii and 2aiv to figures 1aiii and 1aiv). In
Adrian et al. (2000) it is argued that the streamwise extent of the streamwise velocity
autocorrelation reflects the organization of near-wall eddies into packets and the
resulting correlation of the u-fluctuations induced by successive eddies. The length of
a packet increases with increasing Reynolds number because there are more eddies
per packet.

Autocorrelations of the streamwise component for fixed points not on the centreline
exhibit a characteristic shape that is elongated in the streamwise direction and inclined
at a shallow angle to the wall. The average angle is 6◦ and 8◦ at the lower and higher
Reynolds numbers, respectively. Symmetry forces the inclination to vanish when the
fixed point is at the centreline of the channel. The length and height of the region
of high positive correlation grow with increasing distance of the fixed point from
the wall. The streamwise length attains a value in excess of 4h, cf. figures 1(a)(iii),
2(a)(ii) and 2(a)(iii). Autocorrelations of the v-component also grow as the fixed point
moves away from the wall. This is consistent with Townsend’s (1976) attached-eddy
hypothesis which states, in part, that eddies extend down to the wall such that
eddies centred at y have wall-normal scale of order y. However, the v-correlations
have roughly circular contours, in sharp contrast to the elongated contours of the
u-component autocorrelation.

The v-correlations are also short relative to the u-correlations. For example, for
the fixed point at y/h = 0.237, the length of the region in which the u-correlation
coefficient exceeds 40% is 1.5h (126 viscous wall units) in figure 1(a)(ii) while the
corresponding length of the v-correlation coefficient in figure 1(b)(ii) is only 0.4h, a
ratio of almost 4 : 1. At the higher Reynolds number, the length of the u-correlation
is 3.4h compared to 0.3h (424 viscous wall units) for the v-correlation, a ratio of more
than 10 : 1. Although the extent of the v-correlations, of order 0.3–0.4h is relatively
small, the motions associated with the v-component are still large scale, in the sense
that they scale with h. Inspection of the u–v cross-correlations reveals that they are
elongated, much like the u-correlations (although somewhat shorter). This suggests
that the largest-scale motions contain a significant fraction of the Reynolds shear
stress and only a small fraction of the v-component energy. To evaluate the exact
amounts, we must perform proper orthogonal decomposition.

The two-point cross-correlation coefficients for u–v and v–u are shown in figures 1
and 2 for completeness. Their length scales are intermediate to those of the u–u and
the v–v autocorrelations. Cross-correlation coefficients have negative values around

Figure 2. Contours of the two-point correlation coefficients for Reh = 29 935. (a)(i)–(a)(iv),
Ruu(rx, y, y

′)/σu(y)σu(y
′); (b)(i)–(b)(iv), Rvv(rx, y, y

′)/σv(y)σv(y
′); (c)(i)–(c)(iv), Ruv(rx, y, y

′)/σu(y)σv(y
′);

(d)(i)–(d)(iv), Rvu(rx, y, y
′)/σv(y)σu(y

′). The locations of the fixed correlating points are: (a)(i)–(d)(i),
y/h = 0.065 (y+ = 92); (a)(ii)–(d)(ii), y/h = 0.237 (y+ = 335); (a)(iii)–(d)(iii), y/h = 0.508 (y+ = 718);
(a)(iv)–(d)(iv), y/h = 1.0 (y+ = 1414).
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the fixed point, and with zero separation, the coefficients are approximately −0.41
over most of the channel. When the fixed point is on the centreline of the channel,
the cross-correlation coefficients are anti-symmetric with respect to y. When the fixed
point is off the centreline, the anti-symmetry persists to the extent that the correlation
coefficients tend to have opposite signs above and below the centreline. Thus, second
quadrant events in the lower half of the channel which produce strong negative values
of the uv-product, tend to be associated with positive uv-events in the upper half of
the channel. Note that the latter is equivalent to a second quadrant event since the
normal to the upper wall is in the downward direction.

4.2. Eigenfunctions and eigenvalue spectra

Equation (7) was solved for the eigenfunctions and eigenvalues for each k using
trapezoidal quadrature and an IMSL eigenproblem subroutine. The number of eigen-
modes in the decomposition was 5346, with 33 modes (k = 0–32) in the streamwise
homogeneous direction and 162 modes (n = 1–162) in the wall-normal direction.

The eigenfunctions for the two Reynolds numbers with the domain of 2h are plotted
in figure 3 for k = 0 and 1 and n = 1, 2, 3 and 4. The non-dimensional eigenfunctions
of the two-dimensional decomposition are (hLx)

1/2φ
(k,n)
i (y) and the non-dimensional

eigenvalues are λ(k,n)/(u2
τhLx). The factor of (hLx)

1/2 is determined by the orthogonality
of eigenfunctions (13), and the factor (u2

τhLx) comes from equation (7). The imaginary
parts of all k = 0 eigenmodes are zero, but for k > 0 the eigenfunctions are complex.
The figures show only the real parts. Both real and imaginary parts of eigenfunctions
contribute to the energy and Reynolds stress associated with each eigenmode. The
phases between eigenfunctions of the u- and v-components do not influence the
contributions of the eigenmodes to the turbulent kinetic energy. However, they are
very important in determining the contributions of the eigenmodes to the Reynolds
shear stress, as can be seen from equation (15). The phases are mostly opposite in
sign in the lower half of the channel and have the same sign in the upper half of the
channel. This results in positive contributions to the Reynolds stress in both halves
of the channel.

The eigenfunctions for both components are alternately symmetric and anti-
symmetric about the centre of the channel for successive orders of the wall-normal
modes and streamwise modes. For each eigenmode, the symmetries of the eigenfunc-
tions for the two components are always opposite. As a consequence, contributions of
each of the eigenmodes to the Reynolds stress are mostly positive. There is a simple
rule which can be used to identify the symmetry of the eigenfunctions in terms of
eigenmode orders k and n. If (k+n) is odd, the eigenfunctions for the u-component are
symmetric and the eigenfunctions of the v-component are anti-symmetric. If (k+n) is
even, the opposite is true. This feature of the eigenfunctions reveals that contributions
to the Reynolds stress are statistically positive, and that both the upper and the lower
halves of the channel are statistically identical.

Equations (14)–(16) can be used to evaluate the contributions of the different
eigenmodes, and hence different scales of eddies, to the energy and the Reynolds
stress. Each mode makes its contribution independently because of the orthogonality
of the eigenfunctions. The k = 0 modes require careful interpretation. From equations
(2) and (3) the k = 0 modes are given by

ûi(0, y) =
1

Lx

∫ Lx

0

ui(x, y) dx =
∑
n

a(0,n)φ
(0,n)
i (y). (17)
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Fractional energy (%)

Order (k, n) Reh = 5378 Reh = 29 935 D

1 (0, 1) 10.5 13.8 1
2 (0, 2) 8.92 9.08 1
3 (1, 1) 5.28 5.81 2
4 (1, 2) 4.92 4.87 2
5 (1, 3) 3.54 3.28 2
6 (0, 3) 2.86 2.58 1
7 (0, 4) 2.64 1.93 1
8 (2, 1) 2.39 2.03 2
9 (1, 4) 2.36 2.24 2

10 (2, 2) 1.72 1.84 2
11 (1, 5) 1.61 1.15 2
12 (0, 5) 1.41 1.25 1
13 (2, 3) 1.29 1.3 2
14 (1, 6) 1.21 1.12 2
15 (2, 4) 1.17 0.94 2
16 (0, 6) 1.15 0.50 1
17 (3, 1) 1.1 1.0 2
18 (1, 7) 0.95 0.60 2
19 (3, 2) 0.91 1.0 2
20 (3, 3) 0.91 0.69 2
6 modes (0–2, 1–2) 33 37

12 modes (0–2, 1–4) 48 50

Table 3. Fractional contributions of the two-dimensional eigenmodes to the total turbulent kinetic
energy for Reh = 5378 and 29 935. The eigenmode indices are denoted by (k, n). The table is arranged
in descending order of the energy contributions at low Reynolds number, Reh = 5378. D is the
degeneracy of the eigenmode in the streamwise direction.

Thus, the (0, n) eigenfunctions represent decomposition of the line average of the
fluctuating velocity over the streamwise length of the domain, Lx. If Lx were infinite,
ergodicity of line averages in the homogeneous streamwise direction would imply
that the line average of each fluctuating velocity component is zero, and hence all
(0, n) modes would vanish. When Lx is finite, the integral in (17) can be interpreted
as a running average, which acts as a low-pass filter. All modes of wavelength Lx or
less integrate to zero, so the k = 0 modes represent the contribution from all motions
whose wavelengths are longer than Lx.

Table 3 gives the fractional contribution of each eigenmode of order (k, n) to
the total energy. They are energy-ordered for the Reh = 5378 modes. Table 4 gives
the fractional contribution of each eigenmode to the total Reynolds shear stress
as calculated from equation (16) by integrating the eigenfunction products across
the channel. The contributions are arranged in descending order of the Reh = 5378
modes (the descending ordering is slightly different for the higher Reynolds number).
Both of these quantities represent contributions to the total value integrated across the
channel. The (0, 1) modes for Reh = 5378 and 29 935 contain 10.5% and 13.8% of total
energy, respectively, and they are the strongest contributors to the energy. The largest
contributors to the total Reynolds stress are the (0, 2) modes, which contain 13.3% and
13.6% of total Reynolds stress for Reh = 5378 and Reh = 29 935. The first six modes
(k = 0–2, n = 1–2) out of a total of 5346 eigenmodes contribute more than a third of
the total energy and half of the total Reynolds stress for both Reynolds numbers. The
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Fractional Reynolds stress (%)

Order (k, n) Reh = 5378 Reh = 29 935 D

1 (0, 2) 13.3 13.6 1
2 (1, 1) 12.28 9.2 2
3 (0, 1) 10.81 7.81 1
4 (1, 2) 9.16 10.2 2
5 (2, 1) 6.25 5.56 2
6 (1, 3) 4.92 0.24 2
7 (2, 2) 4.3 3.95 2
8 (1, 4) 3.8 3.77 2
9 (2, 4) 3.03 1.72 2

10 (0, 4) 2.88 2.4 1
11 (3, 1) 2.69 2.76 2
12 (0, 3) 2.5 1.26 1
13 (3, 3) 2.29 1.36 2
14 (3, 2) 2.22 3.95 2
15 (2, 3) 2.02 2.11 2
16 (4, 1) 1.73 1.57 1
17 (1, 6) 1.71 1.28 2
18 (4, 2) 1.3 1.28 2
19 (3, 4) 1.28 0.186 2
20 (1, 5) 0.734 0.254 2
6 modes (0–2, 1–2) 56 50

12 modes (0–2, 1–4) 75 67

Table 4. Fractional contributions of the two-dimensional eigenmodes to the total Reynolds stress
for Reh = 5378 and 29 935. The eigenmode indices are denoted by (k, n). The table is arranged in
descending order of the Reynolds stress contributions at low Reynolds number, Reh = 5378. D is
the degeneracy of the eigenmode in the streamwise direction only.

first 12 eigenmodes (k = 0–2, n = 1–4) contain almost half of the total energy and two-
thirds to three-quarters of the total Reynolds stress. These modes consist of structures
whose lengths in the streamwise direction are 1

2
Lx = 1.6h (k = 2), Lx = 3.2h (k = 1),

and all modes longer than Lx (k = 0). In the y-direction, the length scales associated
with the modes n = 1–4 range from 2h down to 0.3h (cf. figure 3), which are still
large, considering that the thickness of the logarithmic layer is no more than 0.2h.

These results compare well with direct numerical simulations of channel flow at
low Reynolds numbers. Sirovich et al. (1990) give the eigenvalue spectrum for three-
dimensional decomposition of a very low (barely transitional) Reynolds number
(Reh = 1500, Reτ = 80). Summing over the first four modes in the spanwise direction
gives an approximate two-dimensional decomposition that can be compared to the
present results. The first six most energetic modes are identical to those found in
table 3, but they contain rather more energy, 67% versus 33% at Reh = 5378. At
approximately twice the Reynolds number (Reh = 2800, Reτ = 180) one-dimensional
POD on the half-channel domain (0 < y+ < 180) gives 32% of the total kinetic
energy and 66% of the Reynolds stress in just the first three modes (Moin & Moser
1989). The dominance of the lower-order modes in the direct numerical simulations
is not surprising, because the spectrum of the turbulence has a fairly small range
of scales at low Reynolds numbers. However, the relatively similar behaviour of the
present results at substantially higher Reynolds numbers indicates that dominance of
the large-scale modes persists, even as the spectrum widens.
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The fact that the largest-scale motions in the streamwise and the wall-normal
directions are the most important contributors to the turbulent kinetic energy is
consistent with the early observations of Grant (1958) and Townsend (1958) and
subsequent investigations, which were also at moderate Reynolds numbers. The fact
that these scales also carry more than two-thirds of the total Reynolds shear stress
is quite surprising, and completely at odds with the notion that the large scales are
not important to the transport of momentum and hence ‘inactive’ (Townsend 1976).
Even the first 6 modes that contain 33–37% of the kinetic energy contain 50–56%
of the Reynolds shear stress. The inescapable conclusion is that large-scale motions
play a very important role in the transport of momentum, at least for the range of
Reynolds numbers considered here.

What about the small-scale motions, especially those in the near-wall buffer layer
where they are most active? The contribution of higher-order modes to the total
Reynolds shear stresses is shown graphically in figure 4. For the lower modes shown
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Figure 5. Profiles of the fractional contributions of the first 12 eigenmodes (k = 0–2, n = 1–4) to
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in table 4, the modes all contribute positively, but, in general, the contribution of
a single mode to the Reynolds stress can be positive or negative. Figure 4(a) gives
the spectrum of total contributions to the Reynolds stress of modes, n, summed over
all wavenumbers, k, and the cumulative contributions of all modes with n 6 N. The
lower-order modes for Reh = 5378 actually overshoot the total mean value up to
n = 8, after which slightly negative values return the total to 100% of the total
contribution. A similar phenomenon was reported by Moin & Moser (1989). The
overshoot is minor at the higher Reynolds number. For both cases, 10 modes in n and
all the modes in k suffice to carry all of the Reynolds shear stress. Figure 4(b) gives
the total contribution to the Reynolds stress for different Fourier modes, k, summed
over all Karhunen–Loeve modes, n, and the cumulative contributions for k 6 K .

As indicated earlier, the contributions inferred from the eigenvalues refer to the
total values of the kinetic energy and the Reynolds stress integrated across the
channel. It is possible for the large-scale motions to dominate the integrated value
while the small-scales dominate locally in a region such as the buffer layer. Figure 5
presents the local fractional contributions to the total energy of the streamwise and
wall-normal components by the 12 eigenmodes with k = 0–2 and n = 1–4. Figure 6
gives the corresponding local fractional contributions to the Reynolds shear stress.
The contributions of these 12 modes to the total energy are about 50%, but this is
divided between a large contribution to streamwise kinetic energy of about 60% for
y/h = 0.05–0.6, and a much smaller contribution to the wall-normal kinetic energy
of about 20% for y/h > (0.1–0.2). Thus, most of the streamwise kinetic energy
below y/h = 0.6 is large-scale, but the strong majority of the wall-normal kinetic
energy is smaller-scale. In the channel centre, contributions to both components are
approximately equal. These results are consistent with the observation that smaller
numbers of the large-scale structures reach the centreline. In contrast, figure 6 shows
that uv receives strong contributions from large scales at the centreline. This suggests
that the Reynolds stress events are intermittent in the region of the centreline.

The local contributions of the 12 eigenmodes with k = 0–2 and n = 1–4 to the local
Reynolds stress are 60–80%, except for the region close to the wall (figure 6). This
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Figure 6. Profiles of the fractional contributions of the first 12 eigenmodes (k = 0–2, n = 1–4) to
the Reynolds shear stress. Solid symbols, Reh = 5378; open symbols, Reh = 29 935.

implies that the low mode (large-scale) motions are quite energetic and not ‘inactive’ in
generating turbulence above the buffer layer. In the near-wall region, the contributions
of the large-scales are much smaller. Because of the limited spatial resolution of the
measurements relative to the scales in this region, the values shown in figures 5 and 6
are only estimates of the precise contributions. Even so, the fractional contribution to
the near-wall Reynolds shear stress lies in a range of 13–26%. This is not inconsistent
with an estimate of 15% by Naguib & Wark (personal communication 1999).

4.3. Velocity fields of the large-scale flows

We turn now to the question of determining the flow patterns associated with the
large-scale energetic modes. To be specific, we shall seek the structure of the flows
that create the contributions from the first twelve modes, containing about half
of the kinetic energy, and two-thirds of the Reynolds shear stress. The individual
eigenfunctions cannot, by themselves, describe the structure of an eddy, because
eddies are composed of many modes. This is especially clear for homogeneous
turbulence in which the eigenfunctions are simple trigonometric waves. Lumley’s
(1970) characteristic eddy method attempts to define a single characteristic eddy by
projecting the modal structure on a shot noise model of randomly scattered eddies,
but this approach suffers from a fundamental ambiguity in which the phases of the
complex eigenfunctions are left undetermined (Moin & Moser 1989). This problem
does not arise if we simply phrase the question as one of determining the structure
of the eddies that contribute to certain groups of modes, for then the phases of
each mode are found directly by projecting the instantaneous velocity fields onto
the group. For the present work, this approach is particularly appropriate, because
we have already identified the group of modes that is of interest. Of course, other
groups of modes could also be identified, but they would be associated with different
questions.

4.3.1. Vector structure of the modes

Although individual modes cannot fully describe an eddy, the structure of each
mode is of interest, nonetheless, as a component of the complete structure. From
equation (11), the part of the fluctuating velocity component that is associated with
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the (k, n) mode is

u
(k,n)
i (x, y) = Re a(k,n)Reψ(k,n)

i (x, y)− Im a(k,n)Imψ
(k,n)
i (x, y). (18a)

(The imaginary part of (11) must vanish, since ui is real.) It is easy to show that the
vectors for the imaginary eigenfunctions are the real eigenfunction vectors ψ(k,n)

i =

(ψ(k,n)
1 , ψ

(k,n)
2 ) with a 1

2
π phase shift, corresponding to a dimensional spatial shift of

Lx/4k. Then, the (k, n) mode component of the velocity is

u
(k,n)
i (x, y) = Re a(k,n)Reψ(k,n)

i (x, y)− Im a(k,n)Reψ(k,n)
i (x− Lx/4k, y). (18b)

The eigenfunctions can be presented in a vector form, since the two components ψ1

and ψ2, are related to velocity components u1 and u2. A real eigenfunction vector can
be defined as

Reψ(k,n)(x, y) = (Reψ(k,n)
1 (x, y),Reψ(k,n)

2 (x, y)), (19a)

= (Re[φ(k,n)
1 (x, y)ej2πkx],Re[φ(k,n)

2 (x, y)ej2πkx]). (19b)

From (18b), the modal velocity can be constructed from a linear combination of the
vector field of the real eigenfunction and the vector field of the real eigenfunction
shifted by 1/4k. Thus, it suffices to consider the vector fields given by equation (19).

Figure 7 presents the real eigenfunction vector fields for eigenmodes k = 0 and
1 with n = 1, 2 and 3 for Reh = 5378. Every other vector has been removed to
show the patterns more clearly. Because of homogeneity in the streamwise direction,
the structure of each eigenfunction is sinusoidal with phase θ(x) = 2πkx. The struc-
ture in the inhomogeneous wall-normal direction is determined by the wall-normal
eigenfunctions, φ(k,n)

i (y), cf. equation (19b) and figure 3. Recall that the eigenfunction
vectors of the k = 0 modes represent the projection of all modes having wavelengths
longer than the fundamental wavelength of the domain, 3.2h. They are independent
of x, but the projected wall-normal component does not vanish, so the k = 0 modes
still contribute to the Reynolds shear stress. The (0, 1) and (0, 3) modes are symmetric
with respect to the centreline, while the (0, 2) mode is antisymmetric.

The eigenfunction vector fields of the k = 1 modes in figure 7 are once-periodic
in 3.2h. They show motions like ejections (second-quadrant Q2 events) and sweeps
(fourth-quadrant Q4 events) that are strong in a region inclined at about 35◦ to the
wall. These motions contribute positively to the net mean Reynolds shear stress, the
amount depending on the phase relationship between the u- and v-eigenfunctions. In
figures 7(d) and 7(f), we can discern a recurring pattern consisting of an inclined Q2
event (along the locus of the straight line) in the lower half of the channel lying under
a clockwise rotating motion (highlighted by the ellipse), and an inclined Q4 event
lying under a counterclockwise rotating motion (highlighted by the second ellipse).
The Q2 and Q4 flows create between them a stagnation point and an associated
inclined shear layer. The combination of a rotation about the spanwise direction, an
inclined region of Q2 vectors with a local maximum Q2 event and the shear layer
created by a weaker upstream Q4 event has been identified by Adrian et al. (2000)
as the signature of a flow pattern that carries large amounts of Reynolds shear stress
and occurs frequently in turbulent boundary layers. They defined this pattern as
the hairpin vortex signature, arguing that it corresponds to the flow in the central
(x, y)-plane of a hairpin-like vortex inclined in the streamwise direction. The general
sense of the hairpin paradigm included hairpin, horseshoe and cane-like structures
having the general shape of a quasi-streamwise leg of concentrated vorticity inclined
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Figure 7 (a–c). For caption see facing page.

to the wall and turning over in the spanwise direction near its top (to account for the
spanwise vortex observed in the (x, y)-plane). The Q2 events with local maxima were
associated with vortex induction of the head and legs of the hairpin.

Since the purpose of the present paper is not to determine the relevance of the
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(a) (k, n) = (1, 3); (b) (k, n) = (2, 2).

hairpin paradigm to the POD modes, we shall refer to the flow pattern described
above as the ‘signature of a characteristic Reynolds stress event’.

Note that the reflectional symmetry with respect to the centreline in figure 7(e)
results in regions of inclined Q2 and Q4 events that do not lie under a transverse
vortex. Instead, the pattern looks like an in-plane convergence toward a three-
dimensional saddle point with out-of-plane flow.

The eigenvector fields of the Reh = 29 935 flow are very similar to those in figure 7
for Reh = 5.378. One pattern, a (3, 1) mode presented in figure 8(a), demonstrates the
similarity that is typical of the other modes. The higher-order (2, 2) mode in figure 8(b)
illustrates the increased layering that occurs in the y-direction as the modal order
increases.
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Order
Reh = 5378 Reh = 29 935

(k, n) α(k,n) |a(k,n)| √
λ

(k,n)
α(k,n) |a(k,n)| √

λ
(k,n)

(0, 1) 0 0.271 0.522 0 2.430 0.621
(0, 2) 0 0.280 0.482 0 1.820 0.504
(0, 3) 0 0.450 0.273 0 1.210 0.269
(0, 4) 0 0.453 0.262 0 1.860 0.232
(1, 1) −0.973 0.414 0.370 −0.240 0.466 0.404
(1, 2) −0.123 0.102 0.368 −1.320 2.880 0.369
(1, 3) −0.641 0.244 0.303 −1.240 1.150 0.303
(1, 4) −0.853 0.284 0.248 −0.567 0.692 0.250
(2, 1) −0.423 0.216 0.249 1.170 0.775 0.238
(2, 2) −1.320 0.079 0.211 0.914 0.566 0.226
(2, 3) 0.913 0.145 0.183 0.618 0.574 0.191
(2, 4) 0.651 0.122 0.175 −1.050 0.098 0.162

Table 5. The phases, α(k,n), and amplitudes, |a(k,n)|, of the weighting coefficients, a(k,n), used in the
projections of the two sample instantaneous realizations in figures 9(a) and 10(a) onto 12 eigenmodes
for the two Reynolds numbers. The square roots of the corresponding eigenvalues are given for
comparison.

4.3.2. Velocity fields of the energetic, large-scale motion

To sample the types of eddy structures that are characterized by the low-order
eigenmodes, we have projected many snapshots of instantaneous fluctuating flow fields
onto the subspace spanned by the 12 eigenmodes (k = 0–2, n = 1–4). Representative
samples of the random velocity fields taken from the data sets for each Reynolds
number are shown in figures 9(a) and 10(a). The corresponding projected flow
fields are displayed in figures 9(b) and 10(b). This procedure would fail to yield
a clear picture of the eddies characterized by these modes if no such eddies were
present in the sample realizations. However, table 5 shows that the magnitudes of
the Fourier coefficients |a(k,n)| of each projection are comparable to the root-mean-
square values, as given by the square root of the eigenvalues. Therefore, eddies
that are typical of the first 12 modes are not sparse, so they are usually present
in an individual sample. (The phases of the Fourier coefficients for each random
realization are different, reflecting the dynamical behaviour of the eigenmodes.) The
projected fields in figures 9(b) and 10(b) each clearly contain two structures that
possess all of the elements of the signature of a characteristic Reynolds stress event,
as described above. A Q2 ejection of fluid from the wall with length scale of at least
500 viscous wall units (1.6h) in the streamwise direction and a strong Q4 motion
of fluid from the outer region of the channel can be seen in the lower half of
figure 9(b) for the lower Reynolds number. The Q2 and Q4 motions meet each other
and generate a stagnation point/shear layer that extends from y+ = 100 to 200 with
an inclination angle of about 30◦ to 40◦ to the wall, in a manner very similar to
that discussed above for the eigenmodes. A similar pattern coming down from the
top wall appears to provide the Q4 motion for the downstream eddy on the lower
wall.

The scales of the patterns in figure 9(b) are of the order of the channel height,
but this is not very large in terms of the viscous length scale at the lower Reynolds
number. The projection of the higher Reynolds number velocity field in figure 10(b)
offers much more convincing evidence that these structures do scale with the outer
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Figure 9. (a) An instantaneous turbulent fluctuating velocity field from PIV measurements at
Reh = 5378. (b) The projection onto the first 12 eigenmodes (k = 0–2, n = 1–4).

length scale. Two signatures of large-scale characteristic stress events can be seen, one
attached to the bottom wall and one attached to the top wall. To demonstrate further
the similarity between large eddies at high and low Reynolds numbers, a second
Reh = 29 925 field is projected onto the lowest 12 modes in figure 10(c). This random
snapshot is remarkably similar to the field in figure 9(b). The streamwise scales of the
large motions exceed 2000 viscous wall units, about 2h, and their vertical size is about
one channel half-height or h+ = 1414. Projection onto the first 6 modes instead of the
first 12 modes has no qualitative effect and relatively little quantitative effect on the
pattern of the vector fields. Examination of the full data sets reveals that projections
containing patterns that meet all of the criteria for the signature of a characteristic
stress event occur over half of the time. Given that the eddies have random spanwise
locations relative to the fixed plane of the PIV data, the high frequency with which
the signatures are observed indicates that these structures are indeed characteristic of
the large-scale fields.
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of another flow field onto the same first 12 eigenmodes (k = 0–2, n = 1–4).
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5. Conclusions

Turbulent flow fields in the outer region of flow through a rectangular channel at
Reh = 5378, and Reh = 29 935 have been measured in the streamwise-wall-normal
plane and analysed by two-dimensional proper orthogonal decomposition. The scaling
of the outer flow structures was found to be only approximately the same for the
two Reynolds numbers. The measurements at the larger Reynolds number reveal a
slightly larger contribution to the shear stress from smaller scale motions. This can
be seen by comparing the eigenmodes in tables 3 and 4 and the correlation functions
in figures 1 and 2.

There are two principal results. First, the low-order eigenmodes that carry much
of the turbulent kinetic energy are large-scale motions having wavelengths equal
to or longer than 3.2h. Second, these large-scale motions also carry most of the
Reynolds stress. The 6 eigenmodes (0–2, 1–2), carry 33% of the energy and 56% of
the Reynolds shear stress at Reh = 5378; they carry 37% of the energy and 50%
of the Reynolds shear stress at Reh = 29 935. The inclusion of 6 additional modes
[(2, 1), (1, 3), (2, 2), (1, 4), (2, 4), (0, 4)] captures 48% and 50% of the energy for the two
Reynolds numbers, respectively, and 67% and 75% of the respective Reynolds shear
stresses. At low Reynolds number the turbulent spectrum is relatively narrow, so there
is little difference between the scales of the largest and smallest structures. Hence,
the fact that the first few modes carry much of the Reynolds stress is not surprising.
For example, in the flow studied by Moin & Moser (1989) h+ = 180, and the small-
scale motions having length of order 100 viscous units are of the same size as those
spanning the channel. At Reynolds number of 5378, and most especially at 29 935, the
large scales truly are much larger than the small scales, e.g. h+ = 1414. Hence, the low
modes are very large, and it is surprising that they carry so much Reynolds stress. That
the large-scale motions are highly active in the transport of streamwise momentum
implies that the Reynolds stresses are far from being a local phenomenon, which has
significant ramifications regarding the modelling of the Reynolds shear stress using
Boussinesq eddy viscosity or other gradient transport models. It is interesting to note
that a discussion of the possibility of large-scale motions constituting an important
transport mechanism can be found in Hinze (1975).

At both Reynolds numbers, the energy associated with the normal velocity is carried
by motions that are significantly smaller than the scale of the largest streamwise
motions. For example, at the higher Reynolds number, the streamwise motions
extend to at least 2–4h, while the largest wall-normal motions extend to 0.3h. Since
the Reynolds shear stress is also carried by the large-scale u-components flows, this
implies that the v-component of the flows associated with Reynolds shear stress is
not very energetic. At first thought, it is difficult to imagine a turbulent motion whose
u-component extends over a region much longer than that of the v-component. One
such motion is the vortex packet discussed by Adrian et al. (1998, 2000). It consists
of long regions of coherently aligned hairpin-like eddies. The largest of the individual
eddies reach a significant fraction of the layer thickness, about 0.5h, and the length of
the packets reaches 2–4h. Within a packet, the individual eddies coherently induce a
region of negative streamwise momentum, which, because of their coherent alignment
becomes a negative u-fluctuation almost as long as the packet. The induced flow is
nearly parallel to the wall, i.e. it has little v-energy. Thus, within an individual eddy
the u- and v-components may have similar scale, but the assembly of them has a much
longer scale. The short v-correlation is associated with individual eddies; while the
long u-correlation is associated with the coherent induction of many aligned eddies.
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A comparison of the eigenmodes with actually observed flow fields shows that
individual modes do not represent eddy structures. Their contributions to the flow
field are best seen by projecting instantaneous realizations of the flow onto the
eigenmodes. By doing this for the first 12 modes, which contain half of the kinetic
energy, it is found that large structures have a signature in the (x, y)-plane that has
been identified herein as the signature of a characteristic Reynolds stress event. These
projected patterns have sizes of the order of the channel height, and they are similar
to the signature of a hairpin vortex.

Lastly, the streamwise extent of the longest scales in this study must be interpreted
as 3.2h or longer. Recent studies in pipe flow of the one-dimensional power spectrum
of the streamwise velocity (Kim & Adrian 1999; Hommema 2001) and the uv co-
spectrum (Hommema 2001) show that modes larger than 10 pipe radii contribute
substantially to the total mean values. Similar behaviour could occur in channel flow.

This work is supported by ONR N00014-99-1-0188, NSF ATM95-22662 and NSF
CTS 92-00936.
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